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Abstract

Compression is one solution to improve the strength of softwoods. The effective thermal conductivities of

compressed Japanese cedars (cryptomeria japonica), which were compressed in the radial direction of the wood,

were measured. Both the effective thermal conductivities in the tangential and fiber directions increase propor-

tionally to the density increment due to the compression. However, the thermal conductivity in the radial direction

(compression direction) increases slightly with the density increment. Numerical computations were conducted to

explain the characteristics of thermal conductivity in the radial direction by using a microscopic heat conduction

model for the compressed wood. The numerical results were compared with the measured values. And the physical

mechanism of the heat conduction in the compressed woods is discussed. � 2002 Elsevier Science Ltd. All rights

reserved.

1. Introduction

The total amount of woods consumed in Japan

during a year reaches 1.1 billion cubic meters. However,

75% of them are imported. On the other hand, the re-

source of 1.1 billion cubic meters grows every year in the

domestic forest. Therefore, the resource in the domestic

forest accumulates year by year. This is due to the price

difference between the domestic and imported woods

and most of the resources in the domestic forest is

Japanese cedar (cryptomeria japonica) being softwood. It

is strongly required to improve the quality of domestic

wood which is compression of the wood [1]. It results in

good strength characteristics.

Aluminum window frames are widely used in Japan.

To suppress the energy loss through the window frame,

the development of a thermal insulating window frame

is strongly required. Generally, the effective thermal

conductivity of wood is lower than that of metal.

Therefore, the window frame is one of the uses of the

compressed wood. A careful search of the literature

failed to disclose any prior work on the effective thermal

conductivity of compressed woods. This has motivated

the present study to measure the thermal conductivity of

compressed Japanese cedars.

In this study, the effective thermal conductivities in

each direction of the compressed woods, which were

compressed in the radial direction, were measured. The

measured thermal conductivities in the tangential and

fiber directions increase proportionally to the density

increment due to the compression. However, the thermal

conductivity in the radial direction (compression direc-

tion) increases slightly with the density increment. Then,

a one-dimensional heat conduction analysis was con-

ducted to explain the characteristics of thermal con-

ductivity of the compressed wood. The characteristics of

the thermal conductivity in the tangential and fiber di-

rections were explained by the one-dimensional model

but it failed to explain the characteristics of the thermal

conductivity in the radial direction. Then, numerical

computations were conducted to explain the character-

istics of thermal conductivity in the radial direction by

using a microscopic heat conduction model for the

compressed wood. The numerical results were compared

with measured thermal conductivities. And the physical

mechanisms of the heat conduction in the compressed

woods are discussed.
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2. Compressed woods

2.1. Producing process

The producing process for the compressed wood for

Cr ¼ 1=2 is schematically depicted in Fig. 1. This pro-

ducing process is called as the high-temperature and

high-pressure steam method [2]. It consists of three main

processes, namely:

1. the plasticizing process,

2. the compression process, and

3. the fixation process.

An uncompressed wood was set into the forming die in

the pressure vessel. Then, water was infused up to the

bolster level. The water was heated by electric heaters up

to 180 �C. The temperature rising speed was about 1.5

to 2 �C/min. The pressure in the vessel reached 0.98

MPa. The pressure vessel above water was filled with the

saturated vapor. This heating process is the plasticizing

process. This process is very important to avoid the

destruction of the cell walls of the wood during the

compression process. Then, the wood began to be

compressed by the side moving-ram with the punch. The

compression direction is the radial direction and the

compression was conducted at the constant compression

speed of 5 mm/min. After the compression process, it

turned to the shape fixation process. The most reliable

high-temperature and high-pressure steam method was

Nomenclature

Cr compression ratio ¼ q0=q
c specific heat, J/kg K

D width of medium, m

d width of hot-wire, m

H half height of cell, m

h height of wood, m

_qq conduction heat flux, W=m
2

_qqwire heat generation in hot-wire, W/m
_QQ heat conduction rate, W

T temperature, K

t time, s

u moisture content, kg-water/kg-dry wood

W width of cell, m

WH thickness of horizontal cell wall, m

WV thickness of vertical cell wall, m

x; y; z coordinates, m

X ; Y dimensionless coordinates

Greek symbols

a geometric function ¼ 1þ b2

b geometric function ¼ tan h
g transformed coordinate

K dimensionless thermal conductivity

¼ k=kair

k thermal conductivity W/m K

k�
x ; k

�
y ; k

�
z measured values by thermal conductivity

meter

h inclination angle of cell wall, degree

H dimensionless temperature

¼ ðT � TbÞ=ðTt0 � TbÞ
n transformed coordinate

q density, kg=m
3

Subscripts

0 uncompressed wood

air air

b bottom plane

e east plane

i value at t ¼ 0

t top plane

w west plane

wall cell wall

Fig. 1. A schematic diagram of producing process.
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adopted for the shape fixation. Namely, the shape was

fixed by the secondary heating process in the pressure

vessel of 180 �C and 0.98 MPa for 10 min.

The classical boiling method was adopted for the

plasticizing process of the test pieces of Cr ¼ 4=5, 3/5
and 1/3. The boiling time was 60 min. The selected

compression speed was 15 mm/min. The drying set of

180 �C for 60 min was adopted for the shape fixation

process.

2.2. Moisture content and density

In the present study, the effective thermal conduc-

tivities of the compressed Japanese cedars of the com-

pression ratio Cr ¼ 4=5, 3/5, 1/2 and 1/3 were measured.

The measurements for both the heartwood and the

sapwood were conducted for the test pieces of Cr ¼ 1

and 1/2. And the measurements for the uncompressed

woods were also conducted.

It is well known that the effective thermal conduc-

tivity of a wood is affected by the moisture content of the

wood (e.g. [3]). Then, the moisture content of the spec-

imens was measured by using a thermo-gravimetry and

differential thermal analyzer (Shimadzu Seisakusyo,

DTG-60). The moisture content u and density q of the

specimens are tabulated in Table 1.

3. Measurement of effective thermal conductivity

3.1. Evaluation method of thermal conductivity of non-

isotropic material

The effective thermal conductivities of the com-

pressed Japanese cedars were measured by using a

thermal conductivity meter (Kyoto electronics industry,

TCR-01) that was based on the unsteady hot-wire

method. The hot-wire of the probe is made of a con-

stantan wire of 0.3 mm diameter, and type K thermo-

couple of 0.3 mm diameter is welded on its surface. It is

well known that a wood is a non-isotropic medium,

since the thermal conductivity in the fiber direction is 2

or 3 times higher than those tangential and radial di-

rections. The unsteady hot-wire method is usually used

for the measurement of an isotropic medium, however, it

can be used for the measurement of a non-isotropic

medium whose principal directions of heat conduction

are known [4].

Here, we define the tangential direction, the radial

direction and the fiber direction of a wood as x; y and z,
respectively. The y is also the compression direction.

These directions can be considered as principal direc-

tions of heat conduction. As shown in Figs. 2(a)–(c), the

hot-wire probe (thick solid line in the figures) was put

parallel to each x; y and z direction, and the measure-

ments were conducted. However, these measured values

are not the true thermal conductivities. The measured

values by the thermal conductivity meter are denoted by

k�
x ; k�

y and k�
z , respectively. Takegoshi et al. [4] analyti-

cally obtained the following correlations between true

thermal conductivity kx; ky and kz and measured values

k�
x ; k�

y and k�
z for the case where the principal directions

coincide with the hot-wire directions.

kx ¼
k�
yk

�
z

k�
x

; ky ¼
k�
zk

�
x

k�
y

; kz ¼
k�
xk

�
y

k�
z

: ð1Þ

3.2. Validity of Eq. (1)

Takegoshi et al. [4] made the comparison with the

evaluated values from Eq. (1) and values measured by a

one-dimensional steady method for few materials. Both

values agree well within several percent in error. How-

ever, the measured values include the experimental un-

certainty. Then, the validity of Eq. (1) is numerically

confirmed for a case kx ¼ ky 6¼ kz. In such a case,

k�
x ¼ k�

y . Then Eq. (1) can be written as

kx ¼ k�
z ; ky ¼ k�

z ; kz ¼
k�
yk

�
y

k�
z

�
¼ k�

xk
�
x

k�
z

�
: ð2Þ

The model to confirm the validity of Eq. (1) is sche-

matically depicted in Fig. 3. Two-dimensional non-iso-

tropic medium whose thermal conductivities in x and z
directions are kx and kz, respectively, is considered. This

simulates the situation that the hot-wire lies in the y
direction. The cross-section of the medium is a square

Table 1

Property of test pieces

Test piece (Japanese cedar) Moisture content u (%) Density q ðkg=m3Þ

#1 Cr ¼ 1 (sapwood) 17.5 331

#2 Cr ¼ 1 (heartwood) 7.15 351

#3 Cr ¼ 1 (heartwood) 24.2 407

#4 Cr ¼ 4=5 (sapwood) 21.3 377

#5 Cr ¼ 3=5 (sapwood) 15.5 558

#6 Cr ¼ 1=2 (sapwood) 4.08 741

#7 Cr ¼ 1=2 (heartwood) 4.82 932

#8 Cr ¼ 1=3 (sapwood) 5.51 960
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whose side length is D. And the hot-wire represents a

square rod of d. The constant electric power _qqwire (W/m)

is supplied to the hot-wire per unit length at time t ¼ 0.

The unsteady heat conduction equation can be ex-

pressed as:

qc
oT
ot

¼ o

ox
kx

oT
ox

� �
þ o

oz
kz
oT
oz

� �
þ _qqwire

d2
; ð3Þ

where q and c are the density and the specific heat of the

medium, respectively. The medium is large enough, so

that the temperature at the outer boundary does not

change even though the outer boundary is adiabatic.

The medium is initially kept at temperature Ti. The ini-

tial condition and the boundary condition are

t < 0 : T ¼ Ti;

t > 0; on outer boundary :
oT
ox

¼ oT
oz

¼ 0;

in hot-wire region : kx ¼ kz ¼ 1;

in medium region : _qqwire ¼ 0:

ð4Þ

The numerical computations were carried out to

solve Eq. (3). The numerical methodology used was the

control volume method of Patankar [5]. The tempera-

tures on the surface of the hot-wire at t ¼ t1 and t2 are

denoted by T1 and T2, respectively. Then,

k�
y ¼

_qqwire
4p

lnðt2=t1Þ
T2 � T1

: ð5Þ

Substituting k�
y into Eq. (2), then kz is obtained, since k�

z

is identical with kx. The computations were conducted

for the cases for kx ¼ 0:1–0.4 W/m K, kz ¼ 0:2–0.8 W/m

K and D ¼ 0:1 m, d ¼ 4
 10�4 m and for t1 ¼ 60 s and

t2 ¼ 600 s. The deviation between true and evaluated

values is plotted in Fig. 4. The maximum deviation in

this computational range is about 1.4%.

3.3. Measurement procedure

In the unsteady hot-wire method, the hot-wire is

heated by electric current. The temperature on the hot-

wire rises rapidly and this temperature rise is propa-

gating outward in a specimen. A specimen should be

large enough so that the temperature on the outer

surface of the specimen keeps constant during the

Fig. 2. A schematic diagram of measurement in three directions: (a) tangential ðxÞ direction; (b) radial ðyÞ direction; (c) fiber ðzÞ di-
rection.

Fig. 3. A schematic diagram of numerical model.
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measurement. In the present study, the size of the

specimen and the electric current were determined by

numerical simulations. The sizes of the specimen and the

electric current chosen are listed in Table 2. In the un-

steady hot-wire method, the temperature of the speci-

men must be uniform at the beginning of the

measurement, therefore, it took sufficient time interval

between measurements when the measurements were

repeated.

4. Effective thermal conductivity

The thermal conductivities of the compressed Japa-

nese cedars are plotted in Figs. 5–7. Figs. 5–7, respec-

tively, represent the effective thermal conductivity in the

tangential ðxÞ, radial ðyÞ and fiber ðzÞ directions. The

dashed lines in Figs. 5 and 6 represent the effective

thermal conductivity normal to the fiber direction of an

uncompressed wood with a moisture content of 0–30%,

k? (e.g. [6]). The dashed line in Fig. 7 represents the

thermal conductivity in the fiber direction of an un-

compressed wood with a moisture content of 0% k== (e.g.

[7]). The measured conductivities of the uncompressed

wood in both directions are slightly higher than the lit-

erature data.

Table 2

Measurement conditions

Test piece Size (mm3) Time (s) Current (A)

#1 Cr ¼ 1 (sapwood) 100
 100
 50 600 0.6

#2 Cr ¼ 1 (heartwood) 100
 100
 50 600 0.6

#3 Cr ¼ 1 (heartwood) 100
 100
 50 600 0.6

#4 Cr ¼ 4=5 (sapwood) 100
 35
 20 300 0.3

#5 Cr ¼ 3=5 (sapwood) 100
 35
 20 300 0.3

#6 Cr ¼ 1=2 (sapwood) 120
 68
 35 600 0.6

#7 Cr ¼ 1=2 (sapwood) 120
 68
 35 600 0.6

#8 Cr ¼ 1=3 (sapwood) 100
 35
 20 300 0.3

Fig. 5. Thermal conductivity in tangential ðxÞ direction.

Fig. 6. Thermal conductivity in radial ðyÞ direction.

Fig. 4. Deviation between true and evaluated values.
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As shown in the figure, the effective thermal con-

ductivities in the tangential direction, kx, and the fiber

direction, kz, of the compressed woods increase pro-

portionally to the density increment due to the com-

pression. However, the effective thermal conductivity in

the compression (radial) direction, ky , increases slightly

with the density increment. The effective thermal con-

ductivity of the compressed wood is lower than that of

the uncompressed wood in the range of q > 800 kg=m
3
.

This thermal characteristic is desirable for the com-

pressed wood.

Photographs of cell walls of the uncompressed wood

(#1) and the compressed wood (#6) observed by a laser-

microscope are shown in Figs. 8(a) and (b), respectively.

The cell walls of the compressed wood are bent by

compression. The schematic diagrams of the cell wall of
Fig. 7. Thermal conductivity in fiber ðzÞ direction.

Fig. 8. Photographs of cell walls (
50): (a) uncompressed wood; (b) compressed wood.
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the uncompressed and compressed woods are depicted

in Figs. 9(a) and (b), respectively. The number of cell

walls per unit area normal to the tangential ðxÞ direction
increases by compression. Since the thermal conduci-

tivity of the cell wall is higher than that of air, if the

temperature gradient in the tangential ðxÞ direction ex-

ists and one-dimensional heat conduction in the cell wall

is considered, heat flux increases with increasing the

number of horizontal cell walls. The solid arrows in the

figure represent the heat flows. From this one-dimen-

sional model, it can be explained that the effective

thermal conductivity in the tangential ðxÞ direction in-

creases proportionally to the density increment due to

the compression. This is also true in the fiber ðzÞ direc-
tion.

In the case where the temperature gradient in the

compression ðyÞ direction exists, the situation is slightly

complex. The dashed arrows in the figure represent the

heat flows. The heat conducts in the bent walls as shown

in Fig. 9(b). Here, the thicknesses of the wood before

and after compressions are defined as h0 and h, respec-

tively. In this case, the heat conducting pass lengths

before and after compressions are identical. Therefore, if

the temperature differences between the top and bottom

surfaces before and after compressions are identical, the

heat fluxes are identical.

Here, the effective thermal conductivities before and

after compressions are defined as k0 and k, respectively.
Then, the following equation is obtained:

_qq ¼ k0

DT
h0

¼ k
DT
h

: ð6Þ

This can be rewritten as

k ¼ k0ðh=h0Þ ¼ k0ðq0=qÞ: ð7Þ

In the ideal situation, the effective thermal conductivity

in the compression ðyÞ direction decreases with the

density increment due to the compression. This corre-

lation is plotted in Fig. 6.

5. Formulation

5.1. Description of two-dimensional model

The characteristics of the thermal conductivities in

the tangential and fiber directions are successfully ex-

plained by the one-dimensional model. But, the one-di-

mensional model fails to explain the characteristics of

the thermal conductivity in the radial direction. Then, a

two-dimensional model, in which two-dimensional heat

conduction in the cell walls and the cavity is considered,

is schematically depicted in Fig. 10. The following as-

sumptions are made:

1. The cell geometry is rectangular.

2. The cell wall thickness is uniform but the thicknesses

of the horizontal and vertical cell walls are different.

3. The cells of the same geometry are stacked in y (radial)
direction and are aligned in x (tangential) direction.

4. Overall temperature gradient exists in y (radial) direc-
tion.

5. The temperature on the bottom plane is uniform.

6. The temperature on the top plane is also uniform.

7. The temperature field repeats itself in successive cells

in x (tangential) direction.

Under these assumptions and the symmetric condition,

it is possible to solve the heat conduction in only a half

of a cell with periodic thermal boundary conditions.

This half cell is surrounded by dashed line in the figure.

The detail of the half cell is shown in Fig. 11. Two-

dimensional steady heat conduction equation can be

expressed as:

o

ox
k
oT
ox

� �
þ o

oy
k
oT
oy

� �
¼ 0: ð8Þ

The boundary conditions on the top and bottom

boundaries are:

On top boundary : T ¼ Tt0 ;

On bottom boundary : T ¼ Tb:
ð9Þ

Fig. 9. One-dimensional heat conduction model: (a) uncompressed wood; (b) compressed wood.
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Both the side boundaries are the periodic boundary and

are expressed as:

On east and west boundaries :

Te ¼ Tw;
oT
ox

� �
e

¼ oT
ox

� �
w

: ð10Þ

The following dimensionless variables are used:

X ¼ x
W

; Y ¼ y
W

; H ¼ T � Tb
Tt0 � Tb

; K ¼ k
kair

; ð11Þ

where W is the width of the cell and this is chosen for the

reference length. Then upon introduction of the di-

mensionless variables and parameters, the governing

equation has the following form:

o

oX
K
oH
oX

� �
þ o

oY
K
oH
oY

� �
¼ 0: ð12Þ

5.2. Coordinate transformation

A simple algebraic coordinate transformation is used

that maps the parallelogram cross-section onto a rect-

angle. Specifically, the X and Y coordinates are trans-

formed into g and n coordinates by the relations

g ¼ X � Y tan h; n ¼ Y : ð13Þ

In terms of the new coordinates, the solution domain

is bounded by 0 < g < 1, 0 < n < ðH=W Þ cos h. The

transformed equation and their discretization and so-

lutions are documented in a paper by Asako and

Faghri [8]. A simple description will be given here.

Lines of constant g and n are illustrated in Fig. 11. A

control volume which is used for the discretization

contains between g ¼ g1 and g ¼ g2, and n ¼ n1;
n ¼ n2.

Integrating the heat conduction equation over a

control volume in physical space bounded by lines

constant g and n, Eq. (12) becomesZ
S

K~nn � ~rrH
� �

dS ¼ 0: ð14Þ

For evaluation of the surface integrals, expressions are

needed for the element of surface dS, the gradient op-

erator ~rr, and unit vector ~nn. The surface integral is

subdivided into a sum of four surface integrals, respec-

tively, over the segments S1; S2; S3, and S4.

For surface S1 : ~nn ¼~eeY ; dS ¼ dg; ð15Þ

For surface S2 : ~nn ¼ ð~eeX � b~eeY Þa�1=2;

dS ¼ a1=2 dn;
ð16Þ

where

b ¼ tan h; a ¼ 1þ b2 ¼ 1= cos2 h ð17Þ

Fig. 10. Two-dimensional heat conduction model: (a) uncompressed wood; (b) compressed wood.

Fig. 11. Detail of a half cell and lines of constant g and n in the

physical domain.
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and

~rr ¼ o

og

� �
n

~eeX þ o

on

� �
g

(
� b

o

og

� �
n

)
~eeY : ð18Þ

For surfaces S3 and S4, dS is identical to those for S1 and
S2, with the exception that the outward normal~nn has the

opposite sign.

Using Eqs. (16)–(18), Eq. (14) can be rewritten asZ
S1

K
oH
on

�
�b

oH
og

�
dg�

Z
S3

K
oH
on

�
�b

oH
og

�
dg

þ
Z
S2

K a
oH
og

�
�b

oH
on

�
dn�

Z
S4

K a
oH
og

�
�b

oH
on

�
dn¼ 0:

ð19Þ

The control volume formulation of the problem is

completed. Derivatives in g and n directions in Eq. (19)

can be easily discretized and a set of algebraic equations

can be obtained.

5.3. Heat flux and effective thermal conductivity

The heat flux normal to the bottom plane (-y direc-

tion) can be expressed as:

_qq ¼ �~eey �~qq ¼ kwallðTt0 � TbÞ
W

oH
on

�
� b

oH
og

�
b

: ð20Þ

On the bottom plane, H ¼ 0, therefore oH=og ¼ 0.

Then, Eq. (20) becomes

_qq ¼ kwallðTt0 � TbÞ
W

oH
on

� �
b

: ð21Þ

The total heat conduction rate _QQ from the bottom plane

with ds ¼ wdg is

_QQ ¼
Z w

0

_qqds ¼ kwallðTt0 � TbÞ
Z 1

0

oH
on

� �
b

dg: ð22Þ

The heat conduction rate in a plate whose effective

thermal conductivity in the y (radial) direction is ky ,

temperature difference is Tt0 � Tb, and the thickness is

H cos h can be expressed as:

_QQ ¼ ky
Tt0 � Tb
H cos h

W : ð23Þ

Then, the effective thermal conductivity ky of the com-

pressed wood can be expressed as:

ky

kair

¼ kwall

kair

� �
H
W

� �
cos h

Z 1

0

oH
on

� �
b

dg: ð24Þ

Solving the set of algebraic equations, the tempera-

ture is obtained. A line-by-line method is used to solve

the algebraic equations. From the temperature of the

cell, heat flux by conduction can be evaluated. The dis-

cretized procedure of the integral form of the conduction

equation is similar to the work documented by Asako

and Faghri [8] and will not be discussed here. All com-

putations were performed with ð52
 82Þ grid points.

These grid points are distributed in a non-uniform

manner with a higher concentration of grids close to the

interfaces of the cell wall and cavity as shown in Fig. 13

with the isotherms. 20 grid points are assigned in each

cell wall. Supplementary runs were performed with

ð26
 42Þ and ð38
 58Þ grid points to investigate grid

size effects for the inclination angle of h ¼ 45�. The

change in ky=kair between the coarse mesh ð26
 42Þ and
the fine mesh ð52
 82Þ was 1.0%. And the change in

ky=kair between the medium mesh ð38
 58Þ and the fine

mesh ð52
 82Þ was only 0.3%.

6. Numerical results

The computational parameters which have to be

specified prior to the computation are the thermal con-

ductivity ratio, kwall=kair, the aspect ratio of the cell,H=W ,

dimensionless cell wall thicknesses WV=W andWH=W and

the inclination angle h. The reported values for the

thermal conductivity of the cell wall, kwall, range from

0.36 [9] to 0.654 [10]. Here, kwall ¼ 0:654 reported by

Maku [10] was used for computations. And the thermal

conductivity for air at 20 �C, kair ¼ 0:0256 [3], was used.

As seen in Fig. 8, the width and height of the cell and

also the cell wall thickness of each cell are not identical.

Therefore, the width of the cell, W , the height, H , and

the cell wall thicknesses, WV and WH, were measured for

56 uncompressed cells. Cells are not exact rectangles too.

Therefore, W is measured at the mid-height of the cell as

shown in the figure. And also H is measured at the mid

of the cell. The cell wall thicknesses WH and WV are also

measured at the mid of the cell. The WV=W and WH=W of

all cells are plotted as a function of H=W in Fig 12. The

ranges of WV=W , WH=W and H=W and its average values

are tabulated in Table 3. The computations were con-

ducted for the geometry of the average values and for

h ¼ 0�, 30�, 45�, 60�, 65� and 70�.
The density of the cell for h ¼ 0 can be easily calcu-

lated from the geometrical shape as

q0 ¼ 1

��
� WV

W

�
H
W

�
� 0:5

WH

W

�
qair

þ 0:5
WH

W
1

�	
� WV

W

�
þ WV

W
H
W



qwall

��
H=W :

ð25Þ

The density of the cell wall and the density of the air at

20 �C are qwall ¼ 1560 kg=m
3
[9] and qair ¼ 1:161 kg=m

3

[3], respectively. The calculated density of the cell of the

average geometry for h ¼ 0 is q0 ¼ 324:6 kg=m
3
. The

density of the compressed cell can be calculated by

q ¼ q0

cos h
: ð26Þ
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The correlation between the compression ratio, Cr, and

the inclination angle, h, can be expressed from the

identity of the compression ratio as

Cr ¼
q0

q
¼ cos h: ð27Þ

Therefore, h ¼ 0�, 30�, 45�, 60�, 65� and 70� correspond
to Cr ¼ 1, 0.866, 0.707, 0.5, 0.423 and 0.342, respec-

tively.

The computed effective thermal conductivity in the

radial direction is plotted in Fig. 6 as a function of the

density. The solid line represents the results of the pre-

sent computations. The chain line in the figure repre-

sents the result by the one-dimensional heat conduction

analysis in which heat conduction in the cavity was ne-

glected. The discrepancy between the measured values

and the results by the simple one-dimensional analysis

was extremely large. However, discrepancy between the

measured values and the present numerical results is

small. The fact that the measured effective thermal

conductivity increases slightly with the density incre-

ment can be explained by considering both heat con-

duction in cell walls and cavity.

The contour plot of the temperature for h ¼ 60�
ðCr ¼ 1=2Þ is presented in Fig. 13. The interval of the

isotherms is equal of DH ¼ 0:1. It is well known that

the heat travels normal to the isotherm. As seen from the

figure, the isotherm and the cell wall intersect with an

inclination angle. This indicates that there exists the heat

flow from air to the cell wall across the cell cavity. Al-

though the thermal conductivity of the air is low, the air

in the cavity may affect the heat conduction in the cell.

Supplementary runs were performed to confirm the ef-

fect of air on the heat conduction rate. Namely, the

Fig. 12. Cell geometry: (a) WH=W vs H=W ; (b) WV=W vs H=W .

Table 3

Dimensionless cell geometry

H=W WV=W WH=W

Maximum 0.61 0.088 0.086

Minimum 1.07 0.22 0.24

Average 0.829 0.137 0.136

Fig. 13. Contour plot of isotherm for h ¼ 60�.

2252 Y. Asako et al. / International Journal of Heat and Mass Transfer 45 (2002) 2243–2253



computations were performed with an assumption of

k ¼ 0 for air in the cavity and the effective thermal

conductivities for such a situation, ky;k¼0, were obtained.

The comparison with the ordinary effective thermal

conductivity was made and the results are tabulated in

Table 4. The contribution of the air to the effective

thermal conductivity, ðky � ky;k¼0Þ=ky , in the case of the

uncompressed wood ðh ¼ 0Þ is 20.8%. This rate increases

with the density increment. It is noteworthy that the rate

reaches 40.7% in the case of h ¼ 70� ðCr ¼ 0:342Þ. The
effective thermal conductivity, ky;k¼0, is also plotted by a

chain line in Fig. 6.

7. Concluding remarks

The effective thermal conductivities of compressed

Japanese cedars (cryptomeria japonica) were measured

by using the unsteady hot-wire method. Numerical

computations were performed to explain the character-

istics of the effective thermal conductivity in the radial

direction by using a microscopic two-dimensional heat

conduction model for the compressed wood. The fol-

lowing conclusions are obtained:

1. The effective thermal conductivities in the fiber direc-

tion, kz, and the tangential direction, kx, increase pro-

portionally to the density increment due to the

compression.

2. The effective thermal conductivity in the radial (com-

pressed) direction, ky , slightly increases with the den-

sity increment. This thermal characteristic is desirable

when the compressed wood is applied for the window

frames.

3. The fact that the measured effective thermal conduc-

tivity in radial direction increases slightly with the

density increment can be explained by considering

both heat conduction in cell walls and cavity. The ef-

fect of air in the cavity on the effective thermal con-

ductivity increases with the density increment.
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Contribution of air to effective thermal conductivity

h ðky � ky;k¼0Þ=ky 
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0 20.8
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65 38.7

70 40.7
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